UNIVERSITY OF ENGINEERING AND TECHNOLOGY TAXILA

 Department of Industrial EngineeringCourse Name: Operations Research
Semester: 5th (Session 2011 Fall)
Name:
Roll \#:

SOLUTION OUIZ \# 1

Course Code: IE-313
Course Instructor: ENGR. ZAHID RASHID
Time Allowed: 30 min
Marks: 10

Answer these questions:

Q\#1: Linear Programming Model Formulation
ABC advertising agency wishes to reach two types of audiences; Customers with annual income of more than Rs. 20,000 (i.e.: Target Audience-A) and Customers with annual income of less than Rs. 20,000 ((i.e.: Target Audience-B). The total advertising budget is Rs. 2,00,000. One T.V. advertising costs Rs. 50,000 and one radio advertising costs Rs. 20,000. For contract reasons, at least 3 advertisements have to be on T.V. and the number of radio advertisements must be limited to 5. Surveys indicate that a single T.V. advertisement reaches $4,50,000$ customers in Target Audience-A and 50,000 in the Target Audience-B. One radio advertisement researches 20,000 in Target Audience-A and 80,000 in the Target Audience-B. Formulate the given problem in such a way that the media-mix to maximize the total audience reach.

SOLUTION:

Decision Variables:

Let X_{1} and X_{2} be the number of advertisements on T.V. and Radio, respectively.

Objective Function:

T.V.: Number of customers with annual income more than Rs. 20,000 is $4,50,000$ while the number of customers with annual income less than Rs. 20,000 is 50,000 . So ,

Total T.V. Audience $=\mathbf{4 , 5 0 , 0 0 0}+50,000=5,00,000$.
Radio: Number of customers with annual income more than Rs. 20,000 is 20,000 while the number of customers with annual income less than Rs. 20,000 is 80,000 . So,

Total Radio Audience $\mathbf{= 2 0 , 0 0 0}+\mathbf{8 0 , 0 0 0}=\mathbf{1 , 0 0 , 0 0 0}$.
MAXIMIZE: $Z=5,00,000 X_{1}+1,00,000 \mathrm{X}_{2} \quad$ TOTAL AUDIENCE REACH
CONSTRAINTS: \rightarrow

$$
\begin{aligned}
& 50,000 X_{1}+20,000 X_{2} \leq 2,00,000 \text { (Total available amount constraint) } \\
& X_{1} \geq 3 \text { (Minimum T.V. advertisement constraint) } \\
& X_{2} \leq 5 \text { (Maximum Radio advertisement constraint) } \\
& X_{1}, X_{2} \geq 0 \text { (Non-Negativity constraint) }
\end{aligned}
$$

Q\#2: Solve the following problems using the graphical method
Minimize $f(x 1, x 2)=5 x 1+10 x 2$
subject to:

$$
\begin{aligned}
& 10 x 1+5 x 2 \geq 50 \\
& 5 x 1-5 x 2 \leq-20 \\
& x 1, x 2 \geq 0
\end{aligned}
$$

Summary of Optimal Solution:

Objective Value $=70.00$
$\mathrm{x} 1=2.00$
$\mathrm{x} 2=6.00$

